华中科技大学国家脉冲强磁场科学中心
学校主页 | English

科学研究

Research

研究机构

当前位置: 首页 > 科学研究 > 研究机构 > 正文

控制和测量技术团队

发布日期:2017-09-12    作者:     来源:     点击:

团队介绍

主要从事强磁场技术、强电磁工程应用方面的研究工作,涉及三个研究方向:电磁测量与控制、电磁加工和生物电磁。

1)电磁测量与控制方面,主要开展高精度时序控制系统研制、复杂电磁环境下物理量的精密测量、新型传感检测技术研究,团队自主研制的脉冲强磁场装置控制系统达到同类实验室国际领先水平;

2)电磁加工方面,主要开展电磁成形力场设计和调控、电塑形效应、非晶材料成形与腐蚀等基础问题研究和多级电磁成形装置研制工作,应用于航空航天运载器大型板管件整体成形和电力系统用新材料制备与加工;

3)生物电磁方面,主要开展微纳米颗粒的电磁操控理论研究、新型磁生物学电磁装置研制及其在靶向输运、基因转染和生物分离等领域的应用研究工作。

目前,该团队有7名成员,其中教授1人,副教授2人,高级工程师1人。


团队成员

姓名 研究方向 电子邮箱(请将#换成@)
韩小涛 脉冲强磁场技术:电磁测量与信号处理、电力电子等,脉冲强磁场工程应用:电磁成形、生物电磁等 xthan#mail.hust.edu.cn
谌祺 脉冲强磁场工程应用:金属材料的电塑性研究 hustcq#gmail.com
曹全梁 脉冲强磁场工程应用:电磁成形、电磁靶向等 quanliangcao#mail.hust.edu.cn
施江涛 复杂电磁装置控制系统及其应用 shijiangtao#hust.edu.cn
谢剑锋 复杂电磁装置控制系统及其应用 xiejianfeng#hust.edu.cn
王娇 设备调试、运行及安全检查 wangjiao_1113#163.com
李建彪 设备调试、运行及安全检查 2677758859#qq.com


主要科研项目

本团队成员目前承担和已完成的科研项目:

1. 国家重点研发计划大科学装置前沿研究专项课题:脉冲强磁场装置实时控制与状态监测技术(2016YFA0401703),2016/06-2020/05.

2. 国家自然科学基金面上项目,动态磁场对磁转染行为的影响及转染效率的增强机制研究(51577083),2016/01-2019/12.

3. 国家自然科学基金青年科学基金项目,振荡复合梯度磁场作用下磁性微粒的解聚式分离特性研究(51407083),2015/01-2017/12.

4. 教育部新世纪优秀人才支持计划项目,脉冲电磁力的调控及应用研究(NCET-13-0225),2014/01-2016/12.

5. 科技部国家973项目课题,多级多向脉冲强磁场系统结构布局优化及设计准则(2011CB012801),2011/11-2016/08.

6. 国家自然科学基金青年基金项目,脉冲电流下块体非晶合金均匀形变行为研究(51201067),2013/01-2015/12.

7. 国家自然科学基金面上项目,三维扫描式大梯度强磁场增强药物对GPCR激活效率的机理研究(51077064),2011/01-2013/12.

8. 武汉市青年科技晨光计划项目,脉冲强磁场电气参数测量系统关键技术研究(200850731349),2008/01-2009/12.

9. 国家大科学工程项目,脉冲强磁场国家重大科技基础设施控制系统研发,2007/01-2012/12.

10. 湖北省自然科学基金项目,串联叠置式空心线圈测量高压直流谐波电流的应用研究(2006ABA070)2006/01-2007/12.


代表性论文

>测量控制类

1. J. Shi, X. Han, J. Xie, L. Li, Analysis and Design of a Control System for the 100 T Pulsed High Magnetic Field Facility at WHMFC, IEEE Transactions on Applied Superconductivity, 26 (2016): 4300604.

2. J. Xie, X. Han, T. Ding, J. Shi, M. Wang, L. Li, Operation Strategy and Reliability Analysis of the Control System for the Hybrid Capacitor-Battery Pulsed High Magnetic Field Facility, IEEE Transactions on Applied Superconductivity, 24 (2014): 3800804.

3. X. Han, L. Huang, J. Shi, B. Ni, X. Duan, Q. Chen, Development of Mechanical Measurement System Applied for Electroplastic Effect Research, 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, (2014): 945-948.

4. J. Xie, L. Huang, B. Zhang, J. Shi, X. Han, Study on Pulsed Magnet Impedance Measurement System Based on Digital Lock-In Technique, Instrument Technique and Sensor, 104 (2013): 99-101.

5. J. Shi, L. Huang, J. Xie, X. Han, Design and Implementation of Real-time Remote Measurement Data Transmission System Applied to Pulsed High Magnetic Field Facility, Instrument Technique and Sensor, 61 (2013): 49-51.

6. J. Shi, X. Han, Y. Cai, J. Xie, L. Li, Function design and implementation of a central control system of a pulsed high magnetic field facility, IEEE Transactions on Applied Superconductivity, 22 (2012): 5401004.

7. X. Han, L. Huang, W. Sun, P. Ding, J. Xie, J. Shi, Discharge current measurement of pulsed high magnetic field facility based on PCB air-core coil and digital integrator, Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 27 (2012): 13-19.

8. X. Han, P. Ding, J. Xie, J. Shi, L. Li, Precise Measurement of the Inductance and Resistance of a Pulsed Field Magnet Based on Digital Lock-in Technique, IEEE Transactions on Applied Superconductivity, 22 (2012): 9001105.

>电磁加工类

1. Q. Cao, Z. Lai, Q. Xiong, Q. Chen, T. Ding, X. Han, L. Li, Electromagnetic attractive forming of sheet metals by means of a dual-frequency discharge current: design and implementation, International Journal of Advanced Manufacturing Technology, 90 (2017): 309-316.

2. Q. Chen, X.T. Han, J.W. Wu, Q.L. Cao, L.T. Huang, L. Liu, L. Li, Mechanism of high velocity electromagnetic deformation of Al-Mg alloy, Philosophical Magazine, 97 (2016): 69-83.

3. Z. Li, X. Han, Q. Cao, Q. Xiong, L. Li, Design, Fabrication, and Test of a High-Strength Uniform Pressure Actuator, IEEE Transactions on Applied Superconductivity, 26 (2016): 3700905.

4. L. Huang, Y. Niu, Z. Lai, S. Ma, D. Deng, T. Zeng, X. Han, Effect of Induced Current on the Flow Stress in the Electromagnetic Ring Expansion, IEEE Transactions on Applied Superconductivity, 26 (2016): 8400904.

5. Q. Cao, X. Han, Z. Lai, Q. Xiong, X. Zhang, Q. Chen, H. Xiao, L. Li, Analysis and reduction of coil temperature rise in electromagnetic forming, Journal of Materials Processing Technology, 225 (2015): 185-194.

6. Q. Cao, L. Li, Z. Lai, Z. Zhou, Q. Xiong, X. Zhang, X. Han, Dynamic analysis of electromagnetic sheet metal forming process using finite element method, International Journal of Advanced Manufacturing Technology, 74 (2014): 361-368.

7. Q. Cao, X. Han, Z. Lai, B. Zhang, Z. Zhou, L. Qiu, L. Li, Effects of Current Frequency on Electromagnetic Sheet Metal Forming Process, IEEE Transactions on Applied Superconductivity, 24 (2014): 3700104.

8. L. Huang, X. Han, Q. Chen, Y. Niu, Z. Lai, Q. Cao, Z. Zhou, L. Li, Effect of electromagnetic ring expansion on the mechanical property of A5083 aluminum alloy, IEEE Transactions on Applied Superconductivity, 24 (2014): 7100104.

>生物电磁类

1. Liu M, Han X, Cao Q, X. Han, , L. Li. Performance analysis of a microfluidic mixer based on high gradient magnetic separation principles, Journal of Physics D: Applied Physics, 50 (2017): 365004.

2. Q. Cao, M. Liu, Z. Wang, X. Han, L. Li, Dynamic motion analysis of magnetic particles in microfluidic systems under an external gradient magnetic field, Microfluidics and Nanofluidics, 21 (2017): 24.

3. Q. Cao, X. Han, L. Chun, J. Liu, L. Li, Note: Magnetic targeting for enhancement of the activation efficiency of G protein-coupled receptor with a two-pair coil system, Review of Scientific Instruments, 87 (2016): 016103.

4. Q. Cao, Z. Wang, B. Zhang, Y. Feng, S. Zhang, X. Han, L. Li, Targeting behavior of magnetic particles under gradient magnetic fields produced by two types of permanent magnets, IEEE Transactions on Applied Superconductivity, 26 (2016): 4401305.

5. X. Han, Y. Feng, Q. Cao, L. Li, Three-dimensional analysis and enhancement of continuous magnetic separation of particles in microfluidics, Microfluidics and Nanofluidics, 18 (2015): 1209-1220.

6. Q. Cao, X. Han, L. Li, An active microfluidic mixer utilizing a hybrid gradient magnetic field, International Journal of Applied Electromagnetics and Mechanics, 47 (2015): 583-592.

7. Q. Cao, X. Han, L. Li, Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms, Lab on a Chip, 14 (2014): 2762-2777.

8. Q. Cao, X. Han, L. Li, Two-Dimensional Manipulation of Magnetic Nanoparticles in Microfluidic Systems, Applied Physics Express, 6 (2013): 5201.

9. X. Han, Q. Cao, L. Li, Design and evaluation of three-dimensional electromagnetic guide system for magnetic drug delivery, IEEE Transactions on Applied Superconductivity, 22 (2012): 4401404.

10. Q. Cao, X. Han, L. Li, Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets, Journal of Physics D-Applied Physics, 45 (2012): 465001.